超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Recent results on Infinite horizon LQ problems for singular Volterra integral equations
作者:     供圖:     供圖:     日期:2024-11-14     來源:    

講座主題:Recent results on Infinite horizon LQ problems for singular Volterra integral equations

專家姓名:周華成

工作單位:中南大學

講座時間:2024年11月15日16:00-17:00

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

In this talk, we presents some recent results on the singular linear Volterra integral control system with quadratic cost functional over the infinite time horizon. The existence of the solution to the mentioned control system with time-varying /constants coefficients is first proved and then the characterization of the existence and uniqueness of the optimal control under proper conditions is explored by maximum principle type necessary conditions. When the coefficients are constant matrices, the singular Volterra integral equation is reduced to the classical Caupto fractional system. In such cases, we show that if $\alpha\in(0,1/2]$, the finiteness of the cost functional implies the initial value must be equal to zero which results in that there is no optimal control whence the initial value is not zero. For the non-zero initial value, the overtaking optimal control is studied, and both the existence and nonexistence of a solution for overtaking optimal control in various cases are established by characterizing the weight function. For $\alpha\in(1/2,1)$, we show that the cost functional must be finite. Moreover, the optimal control for linear quadratic optimal control of the fractional system with $\alpha\in(1/2,1)$ cannot be obtained by linear feedback with a constant gain satisfying an algebraic Riccatic equation is concluded.

主講人介紹:

周華成,中南大學教授,博導,國家高層次青年人才。主要從事偏微分方程控制理論研究。曾獲中國科學院院長特別獎。在IEEE Tans. Automat. Control, Automatica, SIAM. J. Conttol Optim, ESAIM Conttol Optim. Calc. Vat, J.Differential Equations, SCIENCECHINA Infotmation Scencs等享有較高國際學術聲譽的數學和控制領域主流刊物發表多篇論文。

新利百家乐官网的玩法技巧和规则 | 网上百家乐博彩正网| 大发888游戏平台hanpa| 黎城县| 百人百家乐官网软件供应| 澳门百家乐赢钱窍门| 杂多县| 巴宝莉百家乐官网的玩法技巧和规则| 大发888游戏充值| 在百家乐官网二庄两闲揽的概率| 哪里有百家乐游戏下载| 网上百家乐官网赢钱公式| 百家乐合作代打| 望奎县| 澳门玩百家乐官网00| 皇冠在线赌场| 百家乐官网15人桌布| 威尼斯人娱乐棋牌app| 网上赌百家乐官网正规吗| 百家百家乐官网网站| 东丰县| 威尼斯人娱乐城吃饭| 黄金百家乐官网的玩法技巧和规则 | 明升网站| 百家乐网站可信吗| 百家乐官网秘| 百家乐押注最多是多少| 开封市| 全讯网百家乐官网的玩法技巧和规则 | 百家乐官网保单详图| 大发888娱乐场漏洞| 赌博百家乐赢不了| 博彩娱乐网| 新大发888娱乐城| 百家乐官网免费赌博软件| 百家乐筹码500| 百家乐官网双龙出| 高雄县| 德州扑克书| CEO百家乐现金网| 利都百家乐官网国际赌场娱乐网规则|