超级老虎机系统-老虎机报警器_皇冠网百家乐阿_全讯网回馈现金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐一直下注庄家| 百家乐官网最新投注方法| 德州扑克总督| 大中华百家乐官网的玩法技巧和规则| 大发888 娱乐| 月亮城百家乐官网的玩法技巧和规则 | 百家乐视频网络游戏| 汉源县| 百家乐如何玩法| 百家乐真人赌场娱乐网规则| 百家乐官网折桌子| 大发888娱乐平台下| 真人百家乐官网视频赌博| 大发888娱乐场存款168| 圣淘沙百家乐官网娱乐城| 威尼斯人娱乐场送18| 世嘉百家乐官网的玩法技巧和规则| 全讯网22335555| 真让百家乐游戏开户| 新澳门百家乐官网软件下载| 利澳娱乐城官方网| 菲律宾百家乐娱乐平台| 黄金城百家乐官网安卓版| 永利博百家乐官网现金网| 免费百家乐倍投| 皇冠百家乐代理网址| 免费百家乐官网游戏下| 百家乐官网打线| 网球比赛直播| 水果机破解器多少钱| 百家乐购怎么样| 全讯网百家乐官网的玩法技巧和规则| 镇原县| 波音现金网投注| 巴宝莉百家乐的玩法技巧和规则| 网络百家乐免费试玩| 百家乐官网小揽| 澳门百家乐官网娱乐城信誉如何| 威尼斯人娱乐网反| 百家乐投注很好| 百家乐官网代理打|